Verification Based Development Process for Embedded Systems

T. Correa$, L.B. Becker?, J.-P. Bodeveix**, J.-M Farines?, M. Filali**,
F. Vernadat'?

*CNRS ; IRIT ; Université de Toulouse, 118 route de Narbonne, F-31062 Toulouse, France

fCNRS ; LAAS ; 7 avenue colonel Roche, F-31077 Toulouse, France

tUniversité de Toulouse ; UPS, INSA, INP, ISAE, UT1, UTM ; F-31062 Toulouse, France

YFederal University of Santa Catarina, Florianopolis, Brazil

Abstract: Designing safety critical systems is a
complex task due to the need of guaranteeing that the
resulting model can cope with all the functional and
non-functional requirements of the system. Obtaining
such guarantees is only possible with the use of
model verification techniques. This paper presents an
approach aimed to fulfill the needs of critical system
design. The proposed approach is based on the
Architecture Analysis and Design Language (AADL),
which is suitable to describe the system’s architecture.
It contains a sequence of model transformations that
easies the verification of the designed AADL model
and so assures its correctness. It must be highlighted
that this is not performed in a single step, as it is
possible to verify AADL models with different abstrac-
tion levels, which allows successive refinements in a
top-down approach. We use a case study from an Au-
tonomous Parking System to illustrate the proposed
development process.

Keywords: safety-critical systems, design ap-
proach, model-verification

1. Introduction

Modern safety-critical systems are getting more
and more complex and, at the same time, have be-
come indispensable nowadays. Almost every system
that in the past was simply mechanic (e.g. cars,
trains, airplanes) is now equipped with an embedded
computing systems. Also, most of the times, such
systems are safety-critical.

In order to handle such increasing complexity it
is necessary to use proper Software Engineering
methodologies or development process. By appropri-
ated we understand that techniques should both easy
the modeling discipline and provide model-verification
facilities. Model-verification is crucial for safety-critical
systems design because it allows guaranteeing that
the designed model respect the application require-
ments and constraints.

In this context, the Architecture Analysis & De-
sign Language (AADL) [7] seems to be a suitable
choice. AADL is a modeling language that allows early
analysis of a system’s architecture. It supports the
modeling of both software and hardware components
in a hierarchical manner using a set of components
connected through ports. AADL defines properties
that can be attached to modeling elements in order
to give an abstract specification of the dynamic ar-
chitecture of the system. Real-time constraints are
attached to threads, ports, buses, and processors
(e.g. dispatch protocol, period, deadline, processing
power, hardware-software mapping, etc). The AADL
language can also be extended by defining new prop-
erties or by attaching specific languages to some
elements.

Although AADL precise semantics makes it suit-
able for model verification, how to perform such a
task is still an open question. For this reason, we
present in this paper a solution that overcomes this
problem. Our approach consists in supporting model
verification taking into account irregular behaviors and
data. Another important feature from our proposal is

that it follows the Model Driven Engineering (MDE)
principles, as design is intended to remain in high-
level abstraction levels and does not need to worry
about the low-level details from the performed model
transformations.

We can say that the proposed process supports
the safe design of the system’s architecture, once
the resulting system architecture goes through several
verification steps in order to assure its correctness. To
reach this goal it is performed a sequence of model
transformations, maintaining the principles of MDE.
It starts with an AADL model and finishes with an
automaton model that can be verified.

The rest of the paper is structured as follows:
Section 2 discuss some related works. Section 3 gives
a brief introduction to the AADL language. Section 4
presents the proposed development process and our
autonomous parking case study. Section 5 presents
the techniques and toolset used to verify temporal
properties of AADL models. Finally, section 6 draws
the conclusions of this work.

2. Related Work

2.1. Design Languages

UML [4] was created to be a general purpose mod-
eling language for software development. However, its
wide acceptance has suggested its use also to design
distributed embedded real-time systems. UML exten-
sions where proposed since it lacks suitable construc-
tions/abstractions to represent specific concepts from
embedded and real-time systems domains.

The first attempt to overcome such deficiencies
was the UML profile for Schedulability, Performance,
and Time (SPT) [11]. The SPT profile provides con-
cepts to allow both model-based schedulability and
performance analysis, and also a rich framework to
model time and time-related mechanisms. However,
experiences in applying SPT revealed shortcomings
within the profile in terms of its expressiveness for
modeling UML real-time and embedded phenomena.
The amount of issues in the SPT profile resulted in a
Request for Proposals (RFP) for a new UML profile for
specifying embedded and real-time systems. Conse-
quently, a new profile named Modeling and Analysis
of Real-Time and Embedded systems (MARTE) [12]
was proposed. It was accepted by OMG in July 2007.

The MARTE profile addresses: (i) new elements
to be added to UML 2.x; (ii) design of both soft-
ware and hardware aspects of embedded system;
(iii) broader schedulability and performance analysis
capabilities; (iv) specification of embedded systems

characteristics, such as memory capacity and energy
consumption; (v) support to component-based archi-
tectures; (vi) other computational paradigms, such
as asynchronous, synchronous, and timed; and (vii)
compliance with the UML profile for Quality of Service
and Fault Tolerance.

In summary, MARTE is intended to cope with
two concerns: modeling of real-time and embedded
systems features, and to support analysis of system
properties. MARTE Design Model package provides
first-order language constructs to specify model ex-
pressing specific phenomena of real-time and embed-
ded systems. It allows platform modeling in terms of
software or hardware platforms. MARTE sees plat-
forms as a set of resources, possibly comprising finer-
grained resources into a hierarchical manner, in which
each resource offers at least one service. A resource
is seen as a service provider with finite capacity,
which usually comes from physical limitations of the
underlying hardware (e.g. memory capacity, band-
width, processing power, etc.). Considering software
platforms, it provides a model-based view for concepts
provided by RTOS API, such as semaphores and
concurrent tasks (or processes). On the other hand,
regarding hardware platforms, concepts to assist soft-
ware design and allocation are provided using a high-
level hardware description model instead of block
diagrams. Additionally it helps in the analysis of real-
time and embedded properties, and also in hardware
models simulation, which depends on the description
detail level and simulation accuracy.

2.2. Methodologies for Embedded Systems
Design

Designing new generations of embedded real-time
systems is so complex that new design methodolo-
gies where proposed. The Model Driven Engineer-
ing (MDE) [13], for instance, is an initiative to help
developers manage software development complexity
using models at higher levels of abstraction. It can
be understood as a philosophy that guides systems
development. The key aspect in this technology is
allowing the design of models that are decoupled from
their target platform. One example of this technology
is the OMG initiative called MDA [10]. MDA does not
define explicitly the diagrams that should be used
and neither the required transformations among the
three different kinds of models that it defines: Com-
putational Independent Model (CIM), Platform Inde-
pendent Model (PIM), and Platform Specific Model
(PSM). All these models, or visions, may be used
as system’s development tiers, where each tier can

be transformed into another representative model that
can be used to generate specific code to some archi-
tecture. The model, in general, represents elements
using the UML, therefore they can be represented
using the Meta Object Facilities (MOF).

2.3. Tool Support

Among the main benefits of the emerging model
driven approach, one can cite its enhanced possi-
bilities for early verification. Actually, many recent
tools have been proposed to support different kinds
of verification. With respect to our concerns, timing
verification tools have been an active area of research
over these last years. It is interesting to remark that al-
though most of these tools are based on existing the-
oretical models, e.g., timed automata, Petri nets, the
limitations (especially with respect to combinatorial
explosion and scalability) of which are well known, the
effort has been undertaken to achieve them. In fact,
it is hoped that first, the abstraction and the structure
brought by the modeling driven approach and second,
the adoption of a specific execution model will help to
struggle against these limitations. Along these lines,
we can cite the Cheddar [5] scheduling tool which
proposes dedicated analysis for the AADL execution
model. Currently, it considers mainly analytical mod-
els. Future versions should take into account more
detailed behavior descriptions [8]. The tools Uppaal
Port [9] and Pola[2] are based on the traditional model
checking approach. Uppaal Port is based on timed au-
tomata and supports component based development.
In order to reduce the combinatorial explosion Uppaal
Port adopts a synchronous like execution model which
restricts interleavings of the asynchronous approach.
Moreover, it proposes partial order techniques for
reducing space space explorations. The tool Pola is
based on timed Petri nets. It proposes specific support
for the AADL execution model.

3. A brief overview of AADL

AADL is an architecture design language standard-
ized by the SAE. This language has been created
to be used in the development of real time and
embedded systems. As a successor of MetaH, AADL
capitalizes more than 10 years of experiments. MetaH
is a language developed by Honeywell Labs and used
in numerous experiments in avionics, flight control,
and robotic applications. AADL also benefits from
the knowledge on ADLs acquired at CMU during the
development of several ADLs, like ACME and Wright.

AADL contains all the standard concepts of any
ADL: components, connectors used to describe the
interface of components, and connections used to
link components. The set of AADLs components can
be divided in three partitions: the software compo-
nents (process, thread, thread group, subprogram,
and data), the hardware components (processor, bus,
memory, device), and a System component. Compo-
nents can communicate through ports, synchronous
calls, and shared data. A process represents a virtual
address space, or a partition, this address space
includes the program defined by its sub-components.
A process must contain at least one thread or thread
group. A thread group is a logical organization of
threads in a process. A thread represents a sequential
flow of execution, it is the single AADL component
that can be scheduled. A subprogram represents a
piece of code that can be called by a thread or another
program. A data models a static variable used in the
code, they can be shared by threads or processes.

A processor is an abstraction of the hardware
and the software in charge of the scheduling and
the execution of threads. The memory represents
any platform component that stores data or binary
code. The buses are communication channels used to
connect different hardware components. The devices
represent interfaces between the system described
and its environment.

Systems allow composing software components
with hardware components. The interactions can be
defined at a logical and a physical level. At a physical
level, software components are associated to hard-
ware components, a thread to a processor, or a data
to a memory for example. The logical level is used to
describe the communication between hardware and
software. At a logical level we can define communica-
tion connections between processors or devices and
software components.

AADL uses the notion of mode to determine a
set of active components. This mechanism allows
describing dynamic architectures through a static set
of components. We consider here the behavior annex
[8] attached to threads or devices, which is used to
specify an abstract behavior for these components,
allowing to make data dependent analysis.

4. The Proposed Development Process

This section presents our proposed development
process for critical embedded systems. It is possible
to say that this process supports the safe design
of the system’s architecture using MDE’s principles.
By safe design we mean that the resulting system

architecture goes through several verification steps in
order to assure its correctness. To reach this goal it
is performed a sequence of model transformations,
which starts with an AADL model and finishes with
an automaton model that can be verified. This section
skips the details of the verification chain (which is
covered in the next section) and concentrates in the
high-level steps of the proposed process, which are
shown in Figure 1.

1. Requirements Definition

(2. Functional Modeling + Simulation |
|

Proposed

3. Environment Description
DL rocess

4A. Sw Architecture Modeling 4B. Hw Architecture Modeling

5. Sw/Hw Mapping

[6. Refine Real-Time Properties

7. Timing Verification

Fig. 1. Proposed Design Flow

We understand that, as in any system develop-
ment, the initial step is the definition of the functional
and non-functional requirements of the system, result-
ing in a set of requirements. Then it is followed by
the design of a functional model for the system (e.g.
Lustre or Simulink model). The proposed process
itself starts in step-3 with the design of the AADL
model, providing the specification of the external
devices (environment) that interact with the system.
step-4 is split in two parts: (4A) software architecture
modeling/verification and (4B) hardware architecture
modeling. The overall result here should be an AADL
model with basic properties already verified and a
hardware architecture potentially capable to run the
designed software model. In step-5 a mapping from
the modeled software components to the hardware
model is performed. The result is a complete AADL
model. In step-6 it is suggested that the real-time
properties of the AADL model should be updated
with the precise timing information coming from the
simulation of the software in the target platform, which
is conducted in step-5B. The proposed development
process is concluded in step-7 with the final model
verification, which uses as input the AADL model
updated with the precise timing information. After
that, it should be possible to make automatic code-
generation of the application.

It is important to highlight that the design flow
among the steps is not unidirectional. Every time that

a verification step fails the designer should either
backtrack to higher abstraction levels of the AADL
model and its properties or change assumptions
made in earlier levels. For example, if there is an error
in the timing verification (step-7), then the designer
should be able to judge if the problem is due to the
result of step-4A (proposed software architecture) or
to the result of step-4B (target hardware architecture).

The reminder parts of the current section details
the steps depicted in Figure 1. We use an Au-
tonomous Parking (AP) System case study to elu-
cidate the work performed in each step. Moreover,
we concentrate the discussions on the software ar-
chitecture modeling (step-4A). The target hardware
architecture definition (step-4B), although very impor-
tant in the context of the proposed process, should be
subject of additional investigation and therefore is left
out of this work.

4.1. Requirements Definition

The initial step in any development methodology
is to define the requirements of the system to be
developed. This includes both functional requirements
(FR) and non-functional requirements (NFR). While
the former depicts the main functionalities to be per-
formed by the system, the latter imposes restrictions
to those functionalities.

Table 4.1 presents the list of requirements from
the AP system, which has three main functionalities:
(FR1) start/stop the system using a GUI; (FR2) search
for a parking slot; and (FR3) park the car. NFRs are
like properties that must be satisfied by the related
FR. For example, NFR2.2 states that if the speed
is too high (over 20km/h), than it is not possible to
search for a parking slot.

4.2. Functional Modeling and Simulation

In many applications, especially those related with
control systems, it is required to first design a func-
tional model of the system and to simulate it be-
fore any design decision on the system architec-
ture is carried on. This is used either to provide a
deeper understanding of the system functionalities or
to test/simulate control solutions in early development
stage. Tools like Scade/Lustre and Matlab/Simulink
are often used for this propose.

4.3. Environment Description

The third step of the proposed process consists of
using AADL to describe the environment that interacts

FR1 - Start/stop the system using a GUI

UlController SpeedSensol

Description: The system must be explicitly activated
by the driver to start operation

NFR1.1 - To start the system the speed must
Maximum speed | be kept at < 20Km/h

NFR1.2 - The system must inform the user
On operation while it is working

NFR1.3 - The system must inform the user
Finished as it is turned off

FR2 - Search for a parking slot (real-time operation)

Description: When activated, the system must start
searching a new park slot as the vehicle moves forward

NFR2.1 - The system must inform the user

Driver alert when a new parking slot is found

NFR2.2 - If the speed is too high (over 20km/h)

Safety than it is not possible to search a parking slot

FR3 - Parking (real-time operation)

Description: The driver must trigger the beginning
of the parking after a parking slot is found.
The system controls the speed and direction of the vehicle.

NFR3.1 - The system is allowed to start parking

Safety only if the current speed is zero

NFR3.2 - The system must be halted immediately

Emergency Stop | if the driver moves the wheel

NFR3.3 - The system must alert the driver when

Finish allert the parking maneuver is finished
TABLE |I. Requirements set of the Au-

tonomous Parking (AP) System

with the system under development. In other words,
it is necessary to define the set of interactions of the
system with the external devices, such as sensors,
actuators, user interface, etc.

For this reason it is suggested here the use of
a high-level AADL diagram. Figure 2 presents the
diagram designed for the AP system, where it is
possible to observe the main system in the center
(named ParkingCtrl) surrounded by the devices.
An advantage of using AADL for such purpose is that
it allows detailing each message exchanged between
the system and the devices, including information like
data type, arrival pattern, and time constraints.

In this phase it is assumed that two different kinds
of external devices can exist: reused devices and new
devices. While devices like sensors and actuators are
normally reused from previous applications, devices
like User Interfaces (Ul) are normally designed on
demand for each application.

New devices can be subject of formal verification
prior to its use in the model. Therefore it is necessary
to specify the device’s behavior. In the scope of this
work it is suggested to describe behavior using finite
automatons.

To exemplify the verification of devices behav-
ior in the AP system we selected the Ul device
(UIController). A possible behavior of this device

——ParkinoCtl
<<Event>> et
<<Event>> Ieset
tumOff tumnOff o <<EventData> >
takatiat <<Fvent>> takeSlot soeed counter
<<Event>>
nextSlot nextSlot 0 gnsorBack
startSearch startSearch]
i <<Fvent>>
finished finished g0 nsorfron
<EventData> {[
hiohSeed SRR Al front <4 il
<<Bvent>>
found found
gerMotg
c<Datar>. —_—
¥ =
]
eciricMotg
<<Data>>
b P |

Fig. 2. AP System Environment Description.

searching slotFound

Fig. 3. User interface behavior

is depicted in Figure 3. This state-transition diagram
states that, independently of the status of the ap-
plication, the driver can always turn off the system
(NFR1.3). This can be proof by the existence of the
user event Off! in every possible execution state of
the system. Although very simple, this is an example
to show that it is possible to use verification already
at this level.

4.4. Software Architecture Modeling

The software architecture modeling (step-4A) is
probably the most important phase of the proposed
design process. This phase may have several steps
of iterations, as depicted in 4. This is due to the fact
that the designer may create several AADL models,
from more abstract to more detailed ones, and that
all these models should have its properties verified.

In the first iteration the designer must detail the
AADL system process (e.g. ParkingCtrl at Figure
2) into a set of subcomponents (that can be either
processes or threads). As this detailing is completed,
model verification is performed, as explained in the
next section. If the verification fails (many times due to
the lack of information in the model), a new refinement

in each component should take action, starting new
iterations.

Following this approach, each component of the
AADL model can derive into several subcomponents.
By definition, the successive refinements will only
finish as the model contains enough details to be
proof correct or incorrect by the model verification.
Each detailed model (i.e. iteration) should, however,
cope with the abstract behavior defined for the higher
level component.

3A. Software Architecture Modeling

4 AL Select System or Thread
A2.2. Architecture Refinement

more
verification

Fig. 4. Interative-nature from ADPB

Architecture Refinement: The architecture refine-
ment process consists of successive model refine-
ments and verification, as suggested in the design
flow from Figure 5. It starts with identifying the oper-
ation modes (1) and threads (2) of the system, being
followed by the mapping of functions to threads (3).
Afterwards the designer can make the connections
among the threads (4) and associate an execution
mode to each thread (5).

A2.2. Architecture Refinement

1. Identify modes

4. Add connections

5. Assign modes to threads

Fig. 5. Refined steps from Architecture Re-
finement

We suggest organizing the functionalities of the
system using different operation modes. This can be

seen as a kind of temporal decomposition from the
set of available functions. Therefore it is necessary
to identify how many different operation modes the
system should have. These modes can be used to
guide the modeling of the distinct AADL processes
that will be used to decompose the system in sub-
parts. In our case study, the sub-functions of the first
decomposition are more or less analogous to the
operation modes. Figure 6 shows the automaton in
charge of representing the AP system behavior.

Slot

Manouver

Fig. 6. Basic operation modes of the AP
System.

After the identifications of the system
(sub)functions it is possible to decompose the
AADL model into different threads. This can be either
the first level of decomposition of the AADL-system
or a refinement of an existing thread. Defining
connections means to establish the information
exchange among the system subparts (threads).
This also requires the definition of the data types
associates with each port that transfer data.

For the AP system case study, the first level of
decomposition consists basically in three threads, as
shown in Figure 7. SystemManagement is used to
start or halt the AP system by means of the graph-
ical interface (FR1), SlotSelection is responsi-
ble to search for a parking slot (FR2), and finally
ParkingManeuver is responsible to perform the
parking (FR3).

Once we have defined both functions and threads it
is necessary to relate them, i.e. define which functions
belong to which thread. Here, information like period-
icity and deadlines of threads and functions can be
defined. The result of this mapping in the AP system
is shown in Figure 7. As it can be observed, in this
level every thread is responsible for one FR of the
system.

Finally it is required to define in which operation
modes each thread will be active. This represents
a common modeling procedure to make the timing
decomposition of the system functionalities. In AADL
this is performed directly in the code, i.e. there is no
graphical representation for this association. It must
be highlighted, however, that it is possible to associate

pwmn &

kurnon SystemManagement ParkingManouver anald
—==Event=>—J* tunOn <<Data== q
=<Dat= pm angle If—————————
frurnOff <<Eventss rangle|
= rumoff | 2bort E abort anale >
<<Event== urn el d
<<EventData=> wheelMove
heelMoved <]

abort "
£ <<Event=> finished

<<Bupnts3 finished

spead
SlotSelection <<Evpft=> d

=<EventData=>

startSearch speed

highSpeed “4—

-+ startSearchpwm M =frataz>

feakeSlot

> takeslot
nextslot

. < <Eventss L naxtSlot
ound
<. found
parkinglnProgress

——=fvem==—"F parkingInProgress
rant abort 31—

et front

<<Evgnt=>

back =<EventData=>

speed

highSpeed

EVENTOSTS back <<=Fuantss

highSpesd

Fig. 7. AADL model of parking control sys-
tem (in the first decomposition)

a thread with several operation modes.

Model Verification: It is a modeler decision whether
he wants to perform further refinements or to verify
the behavior of the current model. In order to make
the model verification it is necessary to provide the
abstract behavior of each thread that belongs to the
AADL model. Afterwards designer should define the
set of properties of interest to be verified and perform
the verification process. Such process is detailed in
the section 5.

4.5. Time-Related Levels

To verify the real-time properties of the model it is
necessary to make the Software/Hardware Mapping
(step-5). After this step, every thread must be asso-
ciated with a specific processor. The hardware archi-
tecture must have at least one processor. Thereby,
in the Real-Time Properties Refinement (step-6), the
designer can add additional timing information in the
AADL model to be further verified. Such information
must be obtained using, for example, model simu-
lation on top of the target architecture. Thereby it
is possible to obtain the worst case execution time
(WCET) for each function of the system prior to its im-
plementation. The last step of the proposed process
is in charge of making the verification of the timing
properties. Schedulability and response-time analysis
are exemples of possible properties to be verified.

5. Verification Process

It is possible to argue that our proposed verification
process supports the safe design of the system’s

architecture using MDE’s principles. By safe design
we mean that the resulting system architecture goes
through several verification steps in order to assure
its correctness. To reach this goal it is performed a
sequence of model transformations, which starts with
an AADL-like model and finishes with an equivalent
automaton model that is suitable for verification.

The verification process we have been working on
uses AADL models as input and performs the model
checking of LTL properties. Moreover, schedulability
and buffer overflow can also be analyzed, as well as
user defined properties. This process is split in the
following phases (Figure 8):

LTL
property
Aut omat on

nodel

Fig. 8. The verification process.

di agnosti c

o Use of the OSATE-TOPCASED [14], [15] environ-
ment for AADL model edition and XMI generation.
We consider AADL together with its behavioral
annex.

« Translation of AADL XMI models to Fiacre [1].

« Translation of Fiacre to the timed transition sys-
tem (TTS) input format of Tina toolbox.

« Translation to an untimed automaton via an LTL-
preserving time abstraction.

« Verification of LTL properties using the Selt tool
from the Tina toolbox.

5.1. Verification Tools

TINA is a software environment to edit and analyze
Petri nets, Time Petri nets, Time Transition Systems,
and also extension of these nets handling data, pri-
orities and temporal preemption. Beside the usual
editing and analysis facilities of similar environments,
the essential components of the toolbox are a state
space abstraction tool (also called Tina) and a model
checking tool (selt). Detailed information about the
toolbox capabilities can be found in [3].

TINA offers various abstract state space construc-
tions that preserve specific classes of properties of
the state spaces of nets, like absence of deadlocks,
linear time temporal properties, or bisimilarity. For un-
timed systems, abstract state spaces help to prevent

combinatorial explosion. For timed systems, TINA
provides various abstractions based on state classes,
preserving reachability properties, linear properties or
branching properties.

State space abstractions are provided in various
formats suitable for existing model checkers. The
TINA toolbox also provides a native model checker,
selt. Selt allows one to check more specific proper-
ties than the general ones (boundedness, deadlocks,
liveness) already checked by the state space gen-
eration tool. Selt implements an extension of linear
time temporal logic known as State/Event LTL [6], a
logic supporting both state and transition properties.
The modeling framework consists of Kripke transition
systems (labeled Kripke structures, the state class
graph in our case), which are directed graphs in
which states are labeled with atomic propositions and
transitions are labeled with actions.

State/Event-LTL formulas are interpreted over the
computation paths of the model. They may express a
wide range of state and/or transition properties. Some
typical formulas are the following (a formula evaluates
to true if it does so on all computation paths, X, F, G
and U are LTL modalities, p, g are formulas):

p p holds at the start
X p p holds at the next step (next)
G p p holds all along the path (globally)
F p p holds in a future step (eventually)
U g p holds until g holds (until) and g holds eventually.
We also use the weak until operator W. p W ¢ holds
until g holds. It is not mandatory that q eventually
happens.

Real-time properties, like those expressed in so
called “timed temporal logics”, are checked using
the standard technique of observers, encoding such
properties into reachability properties. The technique
is applicable to a large class of real-time properties
and can be used to analyze most of the “timeliness”
requirements found in practice.

5.2. Properties Verification

Currently, we support the verification of three kinds
of properties: (i) implicit properties taken into account
by the translator and leading to deadlock when not
satisfied; (ii) user properties specified through AADL
real-time observers; and (iii) properties specified di-
rectly in linear temporal logic.

Implicit properties: For the moment, two implicit
properties are taken into account by the translator:

« Schedulability: threads are scheduled using a

fixed priority protocol with user-specified preemp-
tion points. Deadline events are generated by the

translator. If a deadline occurs while a thread is
still active, a specific deadlock is generated.

- Buffer overflows: AADL defines the prop-
erty Overflow_Handling_Protocol which specifies
what to do in case of overflow. Either the oldest
or the newest data is lost, or the component is
erroneous. The latest case is handled by the
translator to generate a specific deadlock if the
capacity of the input buffer is exceeded.

Real-time observers: Some properties such as
bounded response time can be expressed using
AADL threads acting as real-time observers. The
component to be checked is linked to an observer
which plays the role of its environment and checks
its responses.

For example, properties of the maneuver com-
ponent of the parking can be verified by specifying
an environment as the following. It checks that the
highSpeed signal is emitted one period (fixed here at
10ms) after the speed becomes non zero. Otherwise,
the err state would be reached. It also checks that
the abort signal is sent if the wheels are moved.
The selt model checker is used to show that the
err state is unreachable.

thread implementation EnvironmentThread.imp
annex behavior_specification {xx

states

sO0: initial complete state;

s1,s2,err: complete state;

transitions

sO 4~ s0 { speed!(0); rangle!(0); };
sO finished?— s0;

sO 4~ s1 { speed!(10); };

sO 4 s2 { wheelMoved!; };

s1 —highSpeed?— s0;

— detected in less than the period

s1 —on highSpeed count = (Q— err;
s2 —|abort?— s0;

s2 —on abort’count=0— err;

*x)

end EnvironmentThread.imp;

Remark Response time information could be
added to the AADL model as properties of flow spec-
ifications and thus be implicitly checked. However,
this is not easy if response time is greater than
the minimum period of the input signal. Here, our
observer supposes that speed does not change while
waiting for the highSpeed signal.

Linear time Temporal Logic: Temporal properties
can be checked on the closed system. They can be
expressed in linear temporal logic (LTL) and passed
to the selt tool. Atomic properties are either event
properties or state properties. For example:

« If the speed is too high, the interface cannot get

the found message while the search has not

been restarted.
O (highSpeed = (—~found W startSearch))

This property is in fact not satisfied because
taking into account the speed information and
aborting the process needs one cycle. We use
the hyperperiod event H to reformulate the prop-
erty as follows: if the speed is too high, starting
from the next hyperperiod signal, we cannot get
the found message unless startSearch has
been pushed.

|
ChighSpeed = (—H U HA(—~found W startSearc@f

« It is possible to park the car, i.e. there exists an
execution path leading to a state where the car
is parked. It is expressed as a negated property:
it is not true that in any execution, finished is
never sent.

Parking £ O-finished

« The car can be parked infinitely often. It is also
expressed as a negated property:

Parking £ Q00-finished

Modal mu-calculus: There exists some useful prop-
erties that cannot be expressed neither in LTL, nor
in CTL. For example, the fact that the user interface
can be reinitializable by the user whatever the system
does. To solve this problem, it can be expressed in
modal mu-calculus using the macro bellow, where U
is the set of user events and ¢ the property to be
reachable, i.e. the initial state. It defines the set of
states from where ¢ is reachable by user events even
if non user events are fired as a smallest fixed point
(the min operator).

reachable(l,) = min X | oV ([-UIXA\/ ([] X A(e)X)
ecU

Such a property can be verified on atemporal
models by the muse tool of the Tina toolbox. It must
be associated with a stability property expressing that
non-user events do not leave the initial state.

It would also be possible to encode a possibly real-
time winning strategy using the AADL behavior annex
and check that the initial state is reachable using an
LTL property over the generated abstract automaton.
In our example, this is very simple because a user
command can always be used.

6. Conclusions

In this paper we presented a verification approach

and the related toolset to design safety critical sys-
tems using the AADL language. This work is part of a
more general project, which also covers the hardware
architecture definition in more details, going towards
producing safe models for critical applications. It must
be highlighted that in the end of the process it is
possible to make automatic code generation from the
AADL model for a given platform.
It should be noticed, however, that given the com-
xity of the situation, the guarantee of the existence
a correct solution cannot be asserted. This also
applies to the implementation derived from the gener-
ated model. To overcome this problem, designer feed-
backs are necessary and, more generally, it should
be wise to superpose to the software engineering
process risk management.

Currently there is no automated process to trans-
forms the requirements identified at a high level of
abstraction and the final concrete properties to verify
on the final formal model. This is currently under
investigation in our group.

Finally, this study has made us aware of the fact
that linear temporal logic although simple is not rich
enough for expressing some required intuitive proper-
ties. In this paper, we have suggested the use of mu-
calculus. We intend to study in future work suitable
patterns to enhance the use of such a logic. Another
further direction of this research would be providing a
risk analysis to assist the design.

Acknowlegements

This work was developed with the grant CAPES
STIC-AmSud 003/07 TAPIOCA : Timing Analysis and
Program Implementation On Complex Architectures
and supported by the French AESE project Top-
cased.

References

[1] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali,
H. Garavel, P. Gaufillet, F. Lang, and F. Verna-
dat. Fiacre: an intermediate language for model
verification in the TOPCASED environment. Pro-
ceedings of the 4th European Congress on Em-
bedded Real-Time Software ERTS 08(Toulouse,
France), January 2008.

[2] B. Berthomieu, F. Peres, and F. Vernadat. Model
checking bounded prioritized time petri nets. In

gineering Institute, Carnegie Mellon University,
2004.

K. S. Namjoshi, T. Yoneda, T. Higashino, and [15] Topcased. (toolkit in open-source for critical

Y. Okamura, editors, ATVA, volume 4762 of Lec-
ture Notes in Computer Science, pages 523—
532. Springer, 2007.

[3] B. Berthomieu, P. Ribet, and F. Vernadat. The
tool TINA — construction of abstract state spaces
for petri nets and time petri nets. International
Journal of Production Research, 42(14), 2004.

[4] G. Booch, J. Rumbaugh, and [|. Jacobson.
The Unified Modeling Language: User Guide.
Addison-Wesley- Longman, 1999.

[5] P. Dissaux and F. Singhoff. Stood and cheddar:
Aadl as a pivot language for analysing perfor-
mances of real time architectures. In 4th Euro-
pean Congress ERTS EMBEDDED REAL TIME
SOFTWARE, Jan. 2008.

[6] S. C. Edmund, E. M. Clarke, N. Sharygina, and
N. Sinha. State/event-based software model
checking. In In Integrated Formal Methods,
pages 128—-147. Springer-Verlag, 2004.

[7] P. Feiler, D. Gluch, and J. Hudak. The ar-
chitecture analysis & design language (AADL):
An introduction. Technical report, Software En-
gineering Institute, Carnegie Mellon University,
2006.

[8] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rol-
land, D. Chemouil, and D. Thomas. The AADL
behaviour annex — experiments and roadmap. In
ICECCS '07: Proceedings of the 12th IEEE In-
ternational Conference on Engineering Complex
Computer Systems, pages 377-382, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[9] J. Hakansson, J. Carlson, A. Monot, P. Petters-
son, and D. Slutej. Component-based design
and analysis of embedded systems with uppaal
port. In ATVA '08: Proceedings of the 6th Interna-
tional Symposium on Automated Technology for
Verification and Analysis, pages 252-257, Berlin,
Heidelberg, 2008. Springer-Verlag.

[10] OMG. MDA specifications. Technical report.
http://www.omg.org/mda/specs.htm.

[11] OMG. Uml profile for schedulability, performance,
and time specification. Technical report, 2003.

[12] OMG. UML profile for
marte. Technical report, 2008.
http://www.omgmarte.org/Documents/Specifications/08-
06-09.pdf.

[13] D. Schmidt. Model-driven engineering. [IEEE
Computer, 39(2), 2006.

[14] S. A. Team. OSATE: An extensible source aadl
tool environment. Technical report, Software En-

apllications and systems development). http:
/lwww.topcased.org.

